
International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 1
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

A Long Endurance Policy (LEP): An Improved
Swap Aware Garbage Collection For NAND

Flash Memory Used As A Swap Space In
Electronic Devices

Arushi Agarwal , Surabhi Maddhesiya, Priya Singh and Rajendra Kumar Dwivedi

Abstract --- Flash memory has more capacity and less weight. It makes it more suitable for electronic media. Electronics such as tablet PC

and smart phones use NAND flash memory as a secondary storage because it has many attractive features such as small size, fas t

access speeds, and light weight. However, it has shown limited success in its battle against the hard disk, due to intrinsic weak points of:

erase-before-rewrite and limited program/erase cycles. Electronics with NAND flash memory uses a “swapping mechanism” to extend a

limited main memory space. However, if the electronic devices use flash memory as swap space, it should perform garbage collection,

which is a time consuming operation. Therefore, in order to manage swap space efficiently along with minimizing the weak points, this work

presents a novel policy that improves the lifetime and provides efficient garbage collection for those devices. The proposed policy has three

features important in NAND flash memory based swap systems: (1) long endurance of flash memory, (2) quick garbage collection time, and

(3) low energy consumption.

 Index terms – Electronic devices, flash translation layer, garbage collection, NAND flash memory, Swapping, swap space,
wear-leveling.

1. INTRODUCTION

 In recent years flash memory has more capacity and a
lower price. It makes flash memory more suitable for
portable consumer electronics. For example, most digital
music players work with NAND flash memory. Now,
makers of smart phones and portable game players use the
flash memory technology or plan to exploit it in the near
future because it has many attractive features such as small
size, shock resistance, high reliability, low power
consumption, and light weight [16].
 Typical electronics such as cellular phones and digital
music players contain DRAM, NOR flash and NAND flash
memory. DRAM is used for a main memory, NOR flash
memory is used for a program code, and NAND flash
memory is used for user data. Because the devices contain
three kinds of memory, it is difficult to cut down the cost of
hardware and reduce the size of it. In order to reduce the
cost and size, it has been attempted to eliminate NOR flash
memory from the electronic devices. Since the device does
not contain NOR flash memory, the application program
code needs to be copied from NAND flash memory to the
main memory during running the application. So,
‚demand paging‛ is exploited.
 Demand paging is a virtual memory technique that code
or data is loaded from the secondary storage only when it

————————————————

I. Arushi Agarwal Email- talk2arushi@gmail.com
II. Surabhi Maddhesiya , Email- surabhi.2907@gmail.com
III. Priya Singh , Email- sweetpriya.singh32@gmail.com
IV. Rajendra Kr. Dwivedi , Email- rajendra_bhilai@yahoo.com
M.M.M.Engg.College, Gorakhpur,India.

Fig.1 Electronic devices such as smart phones, portable game

players, and tablet PC. The makers of these consumer electronics

now use flash memory.

is needed by a process. Furthermore, the portable
consumer electronics using demand paging can exploit a
‚swapping‛ mechanism to extend a limited main memory
space because the mobile game codes become large in
recent years. Since, the swapping frequently performs read
and write operations to the swap space, there are many
invalid pages to free pages. In NAND flash memory,
especially, the number of erase operations is limited to
about 100,000 times. Because of this reason, an efficient
policy should be developed for NAND flash memory based

mailto:talk2arushi@gmail.com
mailto:surabhi.2907@gmail.com
mailto:sweetpriya.singh32@gmail.com
mailto:rajendra_bhilai@yahoo.com

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 2
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

swap system. This paper proposes a new policy for the
electronic media with swapping mechanism. The proposed
policy focuses on minimizing the garbage collection time,
reducing the energy consumption, and extending the
lifetime of NAND flash memory to improve a performance
of electronic media. Trace-driven simulations show that the
proposed policy performs better than the existing garbage
collection such as the Greedy, the Cost-Benefit (CB), and
the Cost Age Time (CAT) policies in

 TABLE 1

PERFORMANCE COMPARISON BETWEEN NOR AND NAND

FLASH MEMORY [15]

terms of the endurance of flash memory, the garbage
collection time, the number of erase operations, and the
energy consumption.

2. LITERATURE SURVEY

 This section describes some important characteristics of
flash memory specially focusing on the viewpoint of
garbage collection and analyzes existing garbage collection
policies.

2.1 Characteristics of NAND Flash Memory

 Flash memory is a non-volatile solid state storage whose
density and I/O performance have improved to a level at
which it can be used as an auxiliary storage for mobile
embedded devices. There are two types of popular flash
memory, namely NOR and NAND flash memories. NOR
flash memory allows for efficient random of byte data
similar to DRAM. Hence, it is useful for execution-in-place
(XIP) of program codes. In contrast, NAND flash memory
is more suitable for storing bulk data such as multimedia
files. The reason is that NAND flash memory offers high
density and fast I/O operations for a group of data called
flash page. As a result, NAND flash memory is preferably
used as a storage system of portable media players and
mobile computers. Recently, hybrid flash memory products
that contain RAM components in NAND flash memory are
emerging and the domain of NAND flash memory is
growing as well. For example, Samsung’s OneNAND
combines a NAND core with SRAM. It could execute
program codes like NOR flash memory and offers higher
data density like NAND flash memory [16]. The

performances of NOR, NAND, and hybrid flash memory
are summarized in Table 1.
 Flash memory is partitioned into blocks and each block
has a fixed number of pages. Unlike hard disks, flash
memory has three kinds of operations: page read, page
write, and block erase. As shown in table 1, each operation
has significantly different performance characteristics.
With these characteristics, flash memory has two
drawbacks related to I/O operations. First, block of flash
memory need to be erased before they are rewritten. An
erase operation needs more time and energy than a read or
a write operation.
The second drawback is that the number of erase
operations allowed to each block is limited. This drawback
becomes an obstacle to develop a reliable flash memory
based embedded systems. To relieve this problem, the
software layer of a flash memory device usually contains
wear-leveling mechanism that controls the erase count of
all blocks as evenly as possible.

2.2 Existing Works on Garbage Collection

 Rosenblum et al. proposed the Log-Structured File
System (LFS) which supports out-place-update I/O
operations for disk storage to improve the I/O
performance. Due to out-place-update property of LFS,
garbage collection policies have already been discussed in
disk storage systems [1-4]. Fortunately, the LFS and log
based disk storage can be applied to NAND flash memory
based storage systems. Wu et al. proposed the Greedy
policy for garbage collection. The Greedy policy considers
only valid data pages in blocks to reduce write cost and
chooses the block with least utilization. However it does
not consider wear leveling.
Kawaguchi et al. proposed the Cost Benefit policy [6]. This
policy evaluates the cost benefit of all blocks in flash
memory using ((a*(1-u))/2u) method, where a is the elapsed
time from the last data invalidation on the block, and u is
the percentage of fullness of the block. After evaluating all
blocks, it chooses the victim block that has maximum cost
benefit value.
 Chiang et al. proposed the Cost Age Time (CAT) policy
[7]. This policy focuses on reducing the number of erase
operations. To reduce the number of erase operations, they
use a data redistribution method. The method operates at
the granularity of pages. Furthermore, the CAT policy
considers wear-leveling.
 Kim et al. proposed the cleaning cost policy [9], which
focuses on lowering cleaning cost and evenly utilizing flash
memory blocks.

2.3 Garbage Collection Procedure

 In order to improve I/O performances, flash memory
based systems support out-place-updates, which needs
garbage collection. The garbage collection procedure is
performed by the following steps:

1. Select one out of the used blocks as a victim block.

NOR

multilevel

cell

(Mbytes/sec)

NAND 90-

nm single-

level cell(x8,

large block)

(Mbytes/sec)

Samsung

OneNAND

90-

nm(Mbytes/sec)

Read 108 16.2 108

Write 0.14 6.8 8.2

Erase(single) 0.11 64 64

Erase(multiple) 0.11 NA 2

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 3
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

2. If there are valid pages in the victim block, they are
copied out of the free block.

3. Erase the victim block after copying out the valid
pages.

4. Add the erase block to the free block list.

To make sufficient free spaces in the flash memory,
garbage collection operation is performed repeatedly,
which needs many write and erase operations. In order to
improve the I/O performance during this procedure,
effective victim selection is important. Fig. 2 illustrates an

Fig. 2 Examples of garbage collection procedure. These examples show the

reason why the victim selection is important.

example of garbage collection procedure, and shows why
victim selection is important. There are six used blocks and
three free blocks in Fig. 2. The garbage collection procedure
will be performed to make more free blocks in the example.
In the scenario 1, the garbage collector selects block 2 as
victim block, copies out the valid pages to block 7 that is a
free block, and then erases block 2 to make a free block.
After erasing block 2, garbage collection is performed
again. At this time, the garbage collector selects block 4,
copies out valid pages, and erase block 4. Although the
garbage collector performed six write operations and two
erase operations, there are still six used blocks (block 1, 3, 5,
6, 7, and 8) and three free blocks (block 2, 4, and 9). In other

words, the procedure did not make another free block.
Therefore, the garbage collector should perform garbage
collection repeatedly until free blocks are sufficient in the
flash memory. In contrast with scenario 1, the garbage
collector of scenario 2 selects block 3 that owns only one
valid page as a victim block and copies out the valid page
to block 7. Then it erases block 3 to make a free block. After
erasing block 3, it selects block 5, copies out the valid
pages, and erase block3. Hence, the garbage collector
performed two write operations and two erase operations
in scenario 2. Though scenario 2 performed less write and
erase operations than scenario 1, it made five used blocks
(block 1, 2, 4, 6, and 9) and four free blocks (block 3, 4, 8,
and 9). This is because scenario 2 selected a block with the
least number of valid pages as the victim block.

3. SWAP SPACE MANAGEMENT TECHNIQUE

 Portable consumer electronics using demand paging
exploit a ‚swapping‛ mechanism to extend a limited main
memory space. The swapping mechanism frequently
performs read, write, and erase operations to the swap
space. Specifically, in flash memory, write and erase
operations are even slower and also needs more energy
than a read operation. Thus, the write and erase operations
are dominant to I/O performances of flash memory based
swap systems. Ohhoon, K et al. proposed a garbage
collection policy named as ‚Swap Aware Garbage
Collection‛ to manage the swap space efficiently and
improves lifetime of NAND flash memory.

3.1 NAND flash memory based swap system

 The architecture of NAND flash memory based swap
system consists of four parts. First, the ‘swap space’
consists of a sequence of page slots, which is used to store a
page swapped out from the main memory. When a page is
swapped out, its location is stored in the corresponding
‘page table entry (PTE)’ *Second+. The information in the
PTE is used to find the correct swap slot in the swap space
when the page is swapped in. Unlike a hard disk based
swap system, the NAND flash memory based swap system
has the Flash Translation Layer (FTL) and the Memory
Technology Device (MTD) layer. Third, the ‘FTL’ provides
a transparent access to flash memory system. If there are
not enough spaces in the swap space, the swap system
should perform garbage collection. Garbage collection is
also handled in FTL *13+. Fourth, the ‘MTD’ layer handles
read, write, and erase operations for the swap system [14].

3.2 Block recycling for swap space

 While garbage collection is performed, other I/O
operations are blocked. This may incur degradation of I/O
performances. Hence, minimizing the garbage collection
time is important to improve the I/O performance of
NAND flash memory. It basically tried to select the victim
block to be erased similar to the Greedy policy during
garbage collection. Because the Greedy policy selects the
block that requires the least number of write operations, it
could minimize the garbage collection time. However,

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 4
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

since the Greedy policy does not consider wear-leveling, it
shows poor performance in terms of the endurance of
NAND flash memory for references with high spatial
locality. To address the problems, it considered the
invalidation time of invalid pages, the swapped out time of
valid pages, and the erase count of flash blocks.
 When garbage collection is needed, the policy calculated
the Invalid Age (IA) of each block, and selects the block with
the largest IA as the victim block. The IA of a block is
computed as-

i

 i_agei = c_time - i_timei (1)

where n is number of invalid pages in a block, c_time is
current time, and i_timei is time when status of page i is
changed to ‚invalid‛. Hence, i_agei is the elapsed time since
page i becomes invalid. If there are many invalid pages in a
block, the IA of the block is large because i_age’s of all
invalid pages are added. Since the garbage collector selects
the block with the largest IA as the victim block, this
reduces the copy-out cost of valid pages. On the other
hand, even if a certain block has only one invalid page, the
i_age of the page could be large enough if the page was
invalidated long time ago. In this case, the IA of the block
becomes large and it can be selected as victim. This
eventually improves wear-leveling of the flash memory.
After selecting victim blocks, the next step was to copy
valid pages of the victim blocks to free blocks. In this
procedure, ‚redistribution of valid pages‛ was performed.

 Fig. 3 The redistribution of valid pages.

For the redistribution of the valid pages, the policy
considered the Elapsed Swapped-out Time (EST) of the valid
page. The EST of each valid page is computed as

 ESTi = c_time – s_timei (2)

 Where c_time is current time, and s_timei is time when pagei
is swapped out from the main memory. Hence, ESTi is the
elapsed time since page i is swapped out from the main
memory. Because the current operating system use the
round-robin based process scheduling scheme, the least
recently swapped-out page is likely to swap in the main
memory in the near future [11].
Thus, the recently swapped-out page is classified as ‚hot
page‛ in the policy. The policy could get the hot valid
pages together into a block during redistribution because
the policy sorted the valid pages by the EST value, and
then copied out the least recently swapped out page first.
Fig. 3 shows the redistribution of valid pages during
garbage collection.

3.3 Free block management for swap space

As already mentioned, the number of erase operations
allowed to each block is limited. Thus, the flash memory
should be controlled to evenly wear out all blocks since
wearing out specific blocks could limit the usefulness of the
whole flash memory. In order to address this problem,
most of existing garbage collection policies consider wear-
leveling of flash memory when the victim block is selected.
In contrast, that policy presented an efficient free block
management scheme for wear leveling of NAND flash
memory to guarantee long endurance of swap system. Fig.
4 shows the free block management scheme for wear
leveling. The policy exploited the sorted free block victim
blocks, it calculated the number of the erase operation of
the erased block, and then the block is added to the free
block list. The free block in the free block list were sorted
by the number of erase operations of the block. During
garbage collection, the block with the minimum number of
erase counts is allocated to valid pages. This newly
allocated block is called ‚active block‛ in figure 4. This
mechanism actually controlled wear-leveling of the NAND
flash memory based swap system. For efficient
implementation, the min heap data structure can be used to
find the block with minimum erase count.

4. A PROPOSED “LONG ENDURANCE POLICY”

 After calculating the IA of each block, the previous
proposed policy, SAGC selects several victim blocks with
the largest IA and then copies valid pages in the victim
blocks to free blocks. SAGC policy selected a random
number of victim blocks which may result in only few
number of free blocks added to the free block list at the end
of garbage collection procedure. And, as a consequence,
garbage collection is needed again and again which may
be a wastage of time as in each call, IA value of each
block is calculated, in order to select victim blocks and

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 5
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

Fig. 4 The efficient free block list management for wear-leveling.

 also function overheads associated with each call. But,
the number of victim blocks selected after calculating IA,
also affects the performance of the system.
So, the proposed “Long Endurance Policy”, considers that
the number of victim blocks selected at a time (n_victim)
depends on the number of free block at that time (n_free).
Let, minimum number of free blocks needed when garbage
collection stops is n_min then

 If n_free < (n_min – n_free)
 Then n_victim = n_free
 Else n_victim = 2*(n_min- n_free)

For example, consider that to evaluate the performance,
when the size of free block is fewer than 10% of the total
size of flash memory, garbage collection is started. And the
garbage collection is stopped when the size of free block list
is larger than 20% of the total size of the flash memory.
Suppose a flash memory consists of 100 blocks out of which
just 9 blocks are free at an instant, which is less than 10% so
garbage collection is needed. According to this proposed
policy, initially the number of victim blocks selected is 9 as
9 < (20 – 9). Supposing that after copying valid pages and
erasing the victim blocks, the number of extra free blocks
added is 6. But till now size of free block list has not
reached to 20% of the size of flash memory so once again
garbage collection is needed. This time number of victim
blocks selected is 10 as 15 > (20 – 15). Supposing that after
copying valid pages and erasing the victim blocks, the
number of extra free blocks added is 6. Now size of free
block list has reached 21 and hence, no need of garbage
collection procedure for the instant.

Thus, it is seen that number of times garbage collection
procedure is called is just 2 whereas random number of
victim blocks selection may lead to a lot many times calling
of the garbage collection procedure. Though number of
write and erase operations do not change but then also the
time taken by various other operations (like computation of
IA each time) will be reduced in this proposed policy.
Hence, efficient number of victim blocks selection reduces
the number of times garbage collection is called.
This proposed policy eventually improves the endurance
of NAND flash memory based swap system. Thus, the
proposed garbage collection policy is named as ‚Long
Endurance Policy (LEP)‛.

The operations for the NAND flash memory based system

are described in Fig. 5

/* If there are not enough free spaces in the main memory,
 the swappable page is removed from the main memory
 and then, it is copied into the swap area.
*/
Swap_out()
{
 Allocate a free block for the swapped-out page;
 Write the page into the free block;
}

/* If the process accesses the swapped-out page,
 The swapped-out page is copied into the main memory.
*/

Swap-in()
{
 Copy the swapped-out page into the main memory;
 Mark the obsolete page as invalid in the swap area;

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 6
ISSN 2229-5518

 IJSER © 2012

http://www.ijser.org

}

/* If there are not enough free spaces in the swap area the
 garbage collection is performed to translate the invalid
 space to the free space
*/
Garbage_Collection()
{
 Calculate the IA of all blocks;
 Select proper number of victim blocks with largest IA;
 For all the valid data pages in the victim blocks
 {
 Calculate the EST value of valid pages;
 Sort the valid pages by the EST value;
 Copy the page with largest EST value into the
 active block first;
 }
 Erase the victim blocks;
 Add the erased blocks to the free block list;
 Sort the blocks in the free block list by the number of
 erase operations;
}

Fig. 5. Operations for NAND flash memory based swap system.

5. CONCLUSION

 This paper presents a novel swap space management scheme,

which is specifically designed for NAND flash memory based

electronics devices such as digital music players, portable game

players, and smart phones. To manage the swap space efficiently,

this paper proposed the new garbage collection policy for the

electronic devices. The proposed policy has three features

important in NAND flash memory based swap systems: (1) long

endurance of flash memory, (2) quick garbage collection time,

and (3) low energy consumption.

 In order to minimize the garbage collection time, reducing the

energy consumption, and extend the lifetime of the NAND flash

memory, the proposed policy considers the invalidation time of

invalid pages, the swapped-out time of valid pages, and the erase

count of flash blocks. As a result, the proposed policy performs

better than other existing policies in terms of number of erase

operations, the garbage collection time, total energy consumption

and the endurance of NAND flash memory.

6. REFERENCES

[1] Rosenblum, M., Ousterhout, J.K., ‚The Design and Implementation of

a Log-Structured File System,‛ ACM Transactions on Computer

Systems, Vol. 10, No. 1, 1992.

[2] Blackwell, T., Harris, J., Seltzer, M., ‚Heuristic Cleaning Algorithms

in Log-Structured File Systems,‛ Proceedings of the 1995 USENIX

Technical Conference, Jan. 1995.

[3] Matthews, J. N., Roselli, D., Costello, A. M., Wang, R. Y., Anderson, T.

E., ‚Improving the Performance of Log-Structured File Systems with

Adaptive Methods,‛ Proceedings of the Sixteenth ACM Symposium

on Operating System Principles, 1997.

[4] Seltzer, M., Bostic, K., McKusick, M. K., Staelin, C., ‚An

Implementation of a Log-Structured File System for UNIX,‛

Proceedings of the 1993 Winter USENIX, 1993.

[5] Wu, M., Zwaenepoel, W., ‚eNVy: A Non-Volatile, Main Memory

Storage System,‛ Proceedings of the 6th International Conference on

Architectural Support for Programming Languages and Operating

Systems, 1994.

[6] Kawaguchi, A., Nishioka, S., and Motoda, H., ‚A Flash-Memory

Based File System,‛ Proceedings of USENIX Technical Conference,

1995.

[7] Mei-Ling Chiang, Paul C. H. Lee, Ruie-Chuan Chang, ‚Cleaning

policies in mobile computers using flash memory,‛ Journal of

Systems and Software, Vol. 48, 1999.

[8] Torelli, P., ‚The Microsoft Flash File System,‛ Dr. Dobb’s Journal,

Feb. 1995.

[9] Hanjoon Kim, Sanggoo Lee, S. G., ‚A new flash memory

management for flash storage system,‛ Proceedings of the Computer

Software and Application Conference, 1999.

[10] Li-Pin Chang, Tei-Wei Kuo, Shi-Wu Lo, ‚Real time garbage collection

for flash-memory storage systems of real-time portable consumer

electronics,‛ ACM Transactions on Embedded Computing Systems,

Vol. 3. 2004.

[11] D. P. Bovet and M. Cesati, ‚Understanding the Linux Kernel‛

O’Reilly, third edition, 2006.

[12] Samsung Electronics: 128M x 8 Bit NAND Flash Memory.

http://www.samsung.com

[13] Intel Corporation, ‚Understanding the Flash Translation Layer (FTL)

Specification‛.

[14] Yaghmour, K., ‚Building Embedded Linux Systems,‛ O’Reilly &

Associates, Inc. 2003.

[15] Santarini, Michael, ‚NAND versus NOR. Which flash is best for

booting your next system,‛ Electronics Design, Strategy, News

(EDN), 2005.

[16] Lawton, G. Improved flash memory grows in popularity. IEEE

Computer. 2006.

[17]Ohhoon, K., Kern, K., ‚Swap Space Management technique for

Portable Consumer Electronics with NAND flash memory‛, IEEE

Transactions on Consumer Electronics, Vol. 56, No. 3, 2010.

http://www.samsung.com/

